Mini-Lecture Series

Team 3176 Off-Season Engineering Orientation

Motors & Gearboxes (PART 2)

Previous Lectures...

Gearboxes

- Without appropriate motor-gearbox combos, your team will find that your robot does not function as quickly and effectively as intended, and may have a tendency to burn out motors or shred gearboxes...
- In this mini-lecture, we'll cover
 - Some basic concepts
 - Types of gears
 - Selecting a gear set

Why use Gears?

- Transmit rotation from the axis of one gear to the axis of another
- Exchange speed (ω) for torque (τ)
 - and vice versa
- Sometimes both...

Gear Geometry

- Pitch Circle the "size" of the gear
- Tooth Count
- Pitch Diameter –
 used to layout gear
 spacing
- Diametral Pitch –
 The ratio of the number of teeth to the pitch diameter.

 Two gears must have the same diametral pitch to mesh

Gear Terminology

- **Driver** gear with applied force
- Follower gear doing useful work
- Idler gear turned by driver & turns follower
- Gear Train many gears in a row
- Geared Up large driver, small follower to <u>speed</u> gear train up
- Geared Down small driver, large follower to increase torque (turning force)
- Compound gears combination of gears and axles where one axle has 2 gears often of different sizes.

Types of Gears

- 1. Spur gears
- 2. Helical gears
- 3. Bevel gears
- 4. Differential gears
- 5. Worm gears
- 6. Planetary Gears

Vex PRO Planetary Gearboxes

- Modular planetary gearbox system designed specifically for use by FRC
- Adapts a variety of FRC motors
 - BAG, MiniCIM, RS-550, RS-775, AM-9015, and CIM)
- Six different planetary stages provide dozens of gearing options from 3:1 to 100:1

Picking a gearbox

- Calculate load ($\tau = r \times F$) and power (how fast)
 - Translate to output torque and speed
- Refer to motor characteristics
 - Use the gearbox to keep the motor on the "left" side of the motor curve
 - Assume each stage to be 90% efficient
 - Allow for plenty of safety factor (max current draw)
- Understand physical interfaces (shafts / mounts)
- Which is best for a 50:1?

Questions?

Sources:

http://stanford.edu/~sebell/firstphysics.html

http://www.instructables.com/id/Understanding-Motor-and-Gearbox-Design

http://www.instructables.com/id/Basic-Gear-Mechanisms

http://geargenerator.com

https://frcdesigns.com/2013/06/24/behind-the-design-understanding-motor-and-gearbox-design/

